Code Execution and
Runtime Verification

Jeff Zemerick

Outline

e The source code.
 The profiler.

e Executing unit tests.
 Runtime Verification.

@ Code Execution and Runtime Verification

Overview of the Code

e ~1.2 million SLOC

e Organized by functional module (~150
modules)

 The code in each directory is independent of
other code (can be built separately).

e Compiles and executes on x86 Linux.

e Built as shared libraries but must be built
statically.

@ Code Execut ion and Runtime Verification

Build Changes

e Components are compiled as shared libraries.

e Shared libraries cannot be easily
instrumented.

 Modified the build process to do the build so
that the executable is linked statically.

— Determined what source files are needed (cross-
module), build and link them with the unit tests.

@ Code Execution and Runtime Verification

Outline

 The source code.

* The profiler.

e Executing unit tests.
 Runtime Verification.

@ Code Execution and Runtime Verification

The Profiler

 Created by my 4 NEAP interns this summer.
e Cprofiler.
e Event-based (function entrances/exits).

e Captures execution trace and can export the
trace as: plain text, CSV, XML

 Translates function addresses to function
names.

 The interns did a fantastic job.

@ Code Execution and Runtime Verification

Instrumenting the Code

e Modified the makefile to include support for:

— Profiling (add my interns’ profiler object file when
linking)

— Debugging — allows for translation of (useless)
function addresses to (useful) function names.

@ Code Execution and Runtime Verification

Example Execution Trace

main (1) (?7?)

|=-function1 (1) (main) Indentation
shows depth.

|=-|=-function2 (1) (functionl)

|=-|=-function3 (1) (functionl)
|=-]=-|=-function4 (1) (function3)

|=-|=-|=-|=-function5(1) (function4)

@ Code Execution and Runtime Verification

Outline

 The source code.
 The profiler.

e Executing unit tests.
 Runtime Verification.

@ Code Execution and Runtime Verification

Executing the Unit Tests

A wrapper facilitates the execution of the unit
tests.

 The wrapper provides stubs for hardware-
specific functionality.

— Allows for testing the code on X86 Linux by
providing stub functions for the hardware-specific

functionality.

@ Code Execution and Runtime Verification

UTH Example

Event report generation for FSW build:

Event Report
Module
(.h file)

FSW Event Report
Module
(.cfile)

Event Report It

Any FSW Module

Event report generation for Test build:

Event Report UTH Event Report

Event Report It

Module
(.cfile)

Module
(.h file)

Any FSW Module

@ Code Execution and Runtime Verification 11

Outline

 The source code.
 The profiler.

e Executing unit tests.
 Runtime Verification.

@ Code Execution and Runtime Verification

12

Runtime Verification

e Requirements for runtime verification:
— Code that will compile and execute.

— Ability to instrument the code to monitor the
execution.

— Ability to compare the execution with a model of
the desired behavior.

e None of the FSW or unit tests were modified
for this work.

@ Code Execution and Runtime Verification

Purpose

e Using the execution trace of the code, can we
identify the presence of implemented
requirements?

@ Code Execution and Runtime Verification

14

Why We Can Attempt to Answer This

e Unit tests achieve 100% coverage of module
testing, per developer rule.

— If a requirement has been implemented, it should
be in the execution trace.

| Filename Coverage
e

99.2 % 968 / 976 lnes
17.6 % 248/ 1411 lines
82.7 % 139/ 168 lines

Untested lines include
def aul t statementsin

o la la

: .c 68.4 % 13 / 19 lines
SW t ch statements and g 53.8 % 2 /13 Baes
code which is tested by s 92.5% 1245/ 1346 lines
other modules. B 919 % 92 /94 nes

-C 66.7 % 6/ 9 lines

98.4 % 482 /490 lnes
100.0 % 415/ 415 lnes

@ Code Execution and Runtime Verification 15

Ll

i

Modeling the Behavior

e Model can be created in two forms:
— Plain text
— UML activity diagram (work in progress).
 Only one model per requirement is necessary.

e Which model type to create and use is up to
the analyst.

e The behavior can be desired behavior or
undesired behavior.

@ Code Execution and Runtime Verification

Plain Text Model for Event Reporting
Model Rules:

C()mmand: <C0mmand> At least one command.
success: <result> } | |

Either Success, Failure, or both.
failure: < result >

Example Model:
command: disable _bus cmd

success: OK
failure: ERROR

@ Code Execution and Runtime Verification

Corresponding UML Model

Requiremsent 1

“< <requirement > ==
4 - — «commands
dizable pus_command

o
< [event Failure] < Srequirement = =
< <requiremnent ==
o
[event success] o — 5
[- #failures
o ERROE
_ 3|
m—
#5UCCRSSS
COE

<
®

Code Execution and Runtime Verification

Eclipse Integration Overview

 Provides a new Eclipse project type called
“NASA IV&V Runtime Verification.”

 Two new file types:
— Text Model Requirement

— Execution Trace

e Custom editors for both file types that
includes syntax highlighting and error
checking.

@ Code Execut ion and Runtime Verification

Eclipse Integration (1)

Y Plug_lns a”ow Select a wizard

BEE

for creating a

Wizards;

It';.fpe filker kexk

“Runtime
Verification” | e
project. P

[E? Plug-in Development
- SN

* Project contains > & Bangs
text models and
execution traces.

@::l = Back ek = | Firmish I

@ Code Execution and Runtime Verification

20

Eclipse Integration (2)

& Resource - example_project/rqmt1.rmd - Eclipse Platform

File Edit Mavigate Search Project Run Window Help

REE

Jfﬁ' J%"JE'Q:"Jr'-'ﬂ:"‘::" K %’L?:,Resaurce
Tﬁ_ﬁ Project Explorer &3 = B {- rgmtl.rmd B3 = O
= Q,:H & = # Model for Recuirement 1 ;I

. comnand: disskble bus crmd
=l = example_praject _ _ _
: rqmtl.rmd failure: ERROER

...... krace ke success: QK

kil
ra Tasks Results Yiew &3 B_L, Prnblems}

Model Trace

Result

J=-<>

Code Execution and Runtime Verification

21

Eclipse Integration (3)

-[o]x

& Resource - example_project,/rgmtl.rmd - Eclipse Platform

File Edit Mavigate Search Project Run Window Help
55 | I Resourre

|09 - |- |& |50 -G =
i e !
[Project Explarer : rgrkl.em
Fs lorer 53 =0 d 52 =8
= <}==é>| @ # Model for Regquirement 1 A|l
5 i3 example_project @ failure: ERRCR -
IE rqmt1,rmd command: disasble bus crd
P brace ch succesa: 0K
[
=
E—;,, Tasks (El Results View f& Problems &3
1 error, 0 warnings, 0 others
Descripkion | Resource | Path
E & Errors (1 item)
Must be preceded by & command.
J 0 Must be preceded by & command. J

Code Execution and Runtime Verification

Eclipse Integration (4)

& Resource - example_project,/rqmtl.rmd - Eclipse Platform = |I:I|ﬂ

File Edit Mavigate Search Project Run ‘Window Help

Jf"’j‘v J%vJ@g“vav'vﬂ:l{jjv - 7 | [Resource

-
r{\jPrDject Explorer &2 = B rgratl.emd B2 = B
= <}==.“l>| & # Model for Requirement 1 ;I
B = example_praject comumand: disable bus cmd

[E] rgmt1.rmd failure: ERROR
: trace ;:rc success: DK

=i J

Code Execution and Runtime Verification 23

Model Checking

e Checks the execution trace for the model.

e Takes into consideration the:
— Order of commands.
— The depth of the call tree.
— The distance between located commands.

 Will likely consider other factors as the
algorithm development progresses.

e Will accommodate UML models once
algorithm is sufficient.

@ Code Execution and Runtime Verification

Limitations

e Cannot test requirements that specify timing
or latency constraints.

e Cannot test hardware-specific requirements
without the flight hardware.

@ Code Execution and Runtime Verification

Summary

* Runtime Verification can provide:
— Assurance that a requirement is implemented.
— Confirmation of a non-implemented requirement.
— Assertion checking to monitor states.

e Execution and profiling can provide:

— Code coverage metrics:
e Locate untested code.
* Focus V&YV efforts on code executed the most (80/20 rule).

— Isolating requirements in unit tests provides the
source code which implements that requirement.

@ Code Execution and Runtime Verification

Thank You

e Jeff Zemerick
e jeffrey.zemerick@tasc.com

27

